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Abstract- SWAN (Simulating WAves Nearshore), developed 
at the Delft University of Technology, is an important third 
generation wave model used to simulate short-crested wind-
generated waves in shallow water areas such as coastal regions 
and inland waters.  The model solves a four-dimensional (2 
spatial dimensions, wave direction, and wave frequency) 
spectral action balance equation using a semi-implicit upwind 
scheme.  Relative to other less advanced wave models, SWAN is 
more computationally demanding, and a parallel version is 
necessary in order to decrease turn-around time, improve the 
model resolution for large coastal regions, and migrate SWAN 
into Navy operational use. 

In this paper we present a new parallel implementation of 
SWAN using a pipelined parallel approach which does not alter 
the order of operations in the sequential numerical algorithm.  
The implementation uses OpenMP compiler directives and runs 
on shared-memory multiprocessor computers.  This approach 
represents a non-traditional, i.e., not loop-level, way of using 
OpenMP.  Performance measurements show that turn-around 
time for high-resolution model applications can be significantly 
reduced with the parallel implementation.  The parallel 
implementation has been verified and model output matches 
"bit-for-bit" with the original sequential code for both 
stationary and non-stationary cases.  The new parallel code has 
already been incorporated into the next official release of SWAN 
and is beginning transition into operational use. 

I.  INTRODUCTION  

For over 30 years the Navy has been performing routine 
operational wave forecasts to support fleet operational and 
training exercises.  During this time wave modeling 
technologies have undergone significant advances in 
representation of the complex dynamics that contribute to 
wave generation and interaction [1].  Modern wave models 
used in weather prediction centers around the world are 
known as “third-generation” models.  Wave prediction for 
oceanic basins and deep water is performed using third-
generation models, such as, WAM [2] and WAVEWATCH 
III [3].  The changing focus of naval warfare from global 
threat to regional conflict has introduced the requirement for 
accurate and timely wave forecasts for the littoral zone.  
Although the deep water models have been adapted to model 
the smaller, high-resolution regions, they lacked the 
sophistication necessary for estimating coastal wave 
conditions.  Presently second generation model STWAVE 
[4], with forcing at the offshore boundary provided by WAM, 
is used for Navy operational wave forecasting in the high 
resolution coastal domains.  In the near future STWAVE will 
be replaced by the more advanced third generation model, 
known as SWAN (Simulating WAves Nearshore) [5].  
SWAN was developed at the Delft University of Technology 
under the ONR Advanced Wave Prediction Program. 

The sophisticated technologies developed in SWAN have 
proven successful in providing accurate wave estimates in the 

littoral region.  However, in addition to accuracy, operational 
wave estimates must be provided in a timely manner, 
otherwise, the information is useless.  SWAN is more 
computationally demanding than STWAVE, thus, to make 
the model operationally viable, it is necessary to take 
advantage of parallel processing to reduce turn-around time.  
In this paper we present an implementation of SWAN for 
parallel computers that satisfactorily addresses the issue of 
turn-around time.  Section II describes the SWAN model and 
its implementation.  Section III describes the details of the 
parallel implementation of SWAN.  Performance 
measurements of the parallel code, along with description of 
a technique for estimating performance, are detailed in 
Section IV.  A summary is given in Section V. 

II. MODEL DESCRIPTION 

Thoughtful observation of the ocean, especially on a 
windy day, will lead one to recognize that waves on the ocean 
surface can be characterized as irregular and random.  In 
SWAN this stochastic process is modeled using what is 
known as a phase-averaging approach which, instead of 
solving for the actual free surface, describes the wave 
conditions at a given location as a linear superposition of 
wave energies defined in terms of their frequency and 
direction.  In this context, the dependent variable is the 
spectral density of wave action (analogous to particle 
dynamics).  The evolution of the spectral action density is 
described by the action balance equation which, for Cartesian 
coordinates, is 
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The action density N is equal to the energy density divided by 
the wave frequency.  The independent variables are the time 
t, the location in geographic space (x,y), and the location in 
spectral space (σ,θ), that is, the wave frequency σ, and the 
wave direction θ.  The propagation velocity in each 
independent dimension is specified by the appropriate ca.  
The source term expressed on the right-hand side of the 
action balance equation represents the effects of generation, 
dissipation, and nonlinear wave-wave interactions. 

Integration of the action balance equation is implemented 
with finite difference schemes in all five dimensions using a 
constant resolution in the discretization.  The numerical 
propagation schemes applied are implicit second-order 
upwind in the geographic space and implicit first-order 
upwind, supplemented with a central approximation, in the 
spectral space.  The implicit nature of the geographic 
propagation schemes used by SWAN is the primary 
difference between SWAN and other third generation wave 
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models, e.g. WAM and WAVEWATCH III.  For a chosen 
direction of propagation, the upwind scheme implies that the 
state at each geographic grid point is dependent only on the 
state in the upwind grid points.  This permits decomposition 
of the spectral space into four quadrants, as shown in Fig. 1, 
according to the wave propagation direction.  With the 
exception of interactions due to refraction, frequency shifting, 
and nonlinear source terms, the solution process in each 
quadrant can be carried out independently from the other 
quadrants.  To properly account for the interactions between 
quadrants, the whole solution process involves iteratively 
computing a sequence of four forward marching sweeps 
across the geographic grid, as illustrated in Fig. 1, with each 
sweep utilizing only boundary conditions or previously 
calculated points in the upwind direction.  The solution of a 
submatrix (spectral space) is required at each geographic grid 
point.  When no currents are present and the depth is 
stationary the submatrix is tridiagonal and solved directly.  
Otherwise, the submatrix is banded and solved using an 
iterative method. 

The SWAN implementation is full-featured with 
numerous user configurable options.  The model can be run 
as either stationary or non-stationary and using either 
Cartesian or spherical coordinates.  SWAN can be readily 
nested in the oceanic scale models WAM and 
WAVEWATCH III.  The SWAN code is sequential, 
consisting of approximately 30,000 logical lines of code with 
over 200 subroutines written mostly in Fortran 77.  A small 
number of Fortran 90 constructs have been added in recent 
years. 

III. APPROACH 

The first step in creating a parallel program from a 
sequential one involves decomposing the computation into 

tasks that can be exploited by the parallel program.  In 
SWAN we identify as a task the computation of the state, 
N(σ,θ), at a geographic grid point.  The next step is to 
examine the data and numerical algorithms to determine the 
dependencies and potential for concurrent computation.  Fig. 
2 illustrates the task dependencies (arrows) and available 
concurrency (dashed lines) for sweeps 1 and 2.  The 
dependencies for a task arise from the upwind stencil are 
understood by following the arrows from tail to head.  In 
other words, for sweep 1, the task at grid point (i,j) is 
dependent on the completion of the tasks at the upwind grid 
points (i-1,j) and (i,j-1).  Tasks that do not share 
dependencies (those connected with dashed lines in Fig. 2) 
can be computed concurrently.  These tasks lie along a 
diagonal that is perpendicular to the sweep direction as 
defined in Fig. 1. 

Based on the defined tasks, their dependencies, and the 
identified concurrency we chose to implement a pipelined 
parallel approach [6].  Pipelining is commonly used in 
situations in which several operations must be completed in a 
sequence {O1,…,On} and those operations have the property 
that some steps of Oi+1 can be carried out before operation Oi 
is finished.  In SWAN we consider the rows of the 
geographic grid as the sequence of operations in which the 
steps of an operation consist of computing the state at each 
grid point in a row.  The steps of a pipelined parallel 
approach are illustrated in Fig. 3 for sweep 1 on a 4x6 
geographic grid with 3 processors.  Each row of the 
geographic grid is assigned to a processor (P0, P1, …) in a 
round-robin fashion.  The computation begins with the first 
upwind grid point; computation of the state at downwind grid 
points begins as dependencies are satisfied.  One can think of 
the processors “flowing” across the grid in the downwind 
direction.  Note that upon completing a row a processor 
begins computing on the next available row (see steps 5, 6, 
and 7 in Fig. 3).  The pipelined parallel steps for sweeps 2, 3, 
and 4 follow a similar pattern, the difference being the 
starting grid point and the “flow” direction.  For a sequential 
program a sweep on a 4x6 geographic grid requires 24 steps.  
From Fig. 3 we see that with the pipelined parallel approach 
on 3 processors the number of steps has been reduced to 10. 

We implemented the pipelined parallel approach in 
SWAN using OpenMP compiler directives [7].  The 
directives produce multithreaded code that runs on shared-
memory multiprocessor computers.  The code modifications 

Sweep 1 (0 - 90°) Sweep 2 (90 - 180°) 

Sweep 3 (180 - 270°) Sweep 4 (270 - 360°) 

Fig. 1. Sweep technique used in SWAN.  The spectral space 
is decomposed into four quadrants based on propagation 
direction.  The solution process for each quadrant consists of 
a sweep over the geographic grid in the chosen propagation 
direction, as indicated by the arrow.  The open circles 
indicate the upwind grid points for a corresponding 
computational grid point (filled circle).  Due to interactions 
between quadrants the complete solution is obtained 
iteratively, where each iteration step includes the four 
sweeps. 

Sweep 1 Sweep 2

Fig. 2. Dependency and concurrency on a 4x6 geographic 
grid for sweeps 1 and 2 of SWAN.  The horizontal and 
vertical arrows indicate dependencies; computation at a grid 
point is dependent on completion of computation at upwind 
grid points.  Diagonal dashed lines connect points with no 
dependencies among them that can be computed in parallel. 
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in the main computational routine (which is called at each 
time step in a non-stationary application) in SWAN are 
shown in Fig. 4.  The OpenMP directive lines begin with the 
“!$OMP” sentinel.  After some pre-iteration setup and 
allocation of shared (visible to all threads) work arrays the 
parallel region begins, as indicated by the “!$OMP 
PARALLEL DEFAULT(SHARED)” directive,  at which 
point a team of threads is started, the number of which is 
determined by the programming environment.  The 
“DEFAULT(SHARED)” instruction indicates that by default 
variables in the routine will be shared among threads unless 
specified otherwise.  Once the parallel region begins each 
thread allocates its own private (i.e., visible only to itself) 
work arrays.  The iterative solution with sweeps across the 
geographic grid is controlled by the ITER and SWPDIR 
loops.  The pipelined parallel approach is applied using the 
“!$OMP DO SCHEDULE(STATIC,1)” directive on the IY 
loop.  This directive instructs the compiler to statically assign 
iterations of the IY loop to threads in a round-robin fashion.  
The LLOCK array, which is reset prior to beginning each 
sweep, is a logical array that guarantees each thread cannot 
proceed to the next grid point until the dependency in the Y 
direction for that grid point has been satisfied.  Dependencies 
in the X direction are satisfied by virtue of the row 
assignment to a thread.  After the state at grid point (IX,IY) is 
computed by the routine SWOMPU, the thread processing 
that grid point signals it is finished by setting LLOCK(IX,IY) 
to FALSE.  The “!$OMP FLUSH” directive instructs the 
compiler to ensure that each thread in the team has a 
consistent view of variables in memory.  There is an implied 
barrier (thread synchronization) at the end of the IY loop to 

ensure each thread remains on the same sweep.  The explicit 
barrier at the end of the SWPDIR loop ensures all threads are 
finished with the sweeps before checking convergence.  Once 
the iterations are completed each thread deallocates its private 
work arrays.  The “!$OMP END PARALLEL” directive 
signals the end of the parallel region, where the team of 
threads is terminated and only a single or master thread 
continues. 

It should be noted that since none of the order of 
operations in SWAN have been changed the new parallel 
code matches “bit-for-bit” with the original sequential code.  
This has been verified with numerous tests on a variety of 
platforms.  Because the OpenMP code modifications are in 
the form of compiler directives which appear syntactically as 
comments to a non-OpenMP compiler, the new parallel code 
can still be compiled with a non-OpenMP compiler to run on 
a single processor machine.  No changes have been made to 
the user interface. 

IV. RESULTS AND DISCUSSION 
To understand the parallel performance of SWAN it is 

useful to examine two quantities known as speedup and 
efficiency.  For a fixed problem size, the speedup on p 
processors over the single processor execution is defined as 

1p pS t t= , where t1 is the sequential execution time and tp is 
the execution time on p processors.  Theoretically, the 
speedup can never exceed the number of processors.  The 
efficiency, defined as p pE S p= , is a measure of the 
fraction of time for which a processor is usefully employed.  
In an ideal parallel system and implementation, the speedup 

P0 P0 
P1 

Step 1 Step 2 Step 3

P0 
P1 
P2 

P0 

Step 4 Step 5 

P1 

Step 6

P2 

Step 7 Step 8 Step 9

P1 
P2 P2 

P0 P0 
P1 

P0 
P1 
P2 

P0 
P1 P1 
P2 P2 

Fig. 3. Pipelined parallel steps for sweep 1 on a 4x6 
geographic grid with 3 processors.  Rows are assigned to 
processors (P0, P1, …) in a round-robin fashion, as 
indicated by the dashed boxes.  Black circles represent grid 
points for which the state is computed during the current 
step; grey circles represent grid points for which the state is 
already computed.  Upon completing a row a processor 
begins the next available row, as seen in steps 5, 6, and 7. 

SUBROUTINE SWCOMP
…pre-iteration setup…
…allocate shared work arrays…

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP+PRIVATE(ITER,SWPDIR,…)

…allocate private work arrays…
DO ITER = 1, ITERMX

DO SWPDIR = 1, 4
…set sweep parameters…
…set LLOCK array…

!$OMP DO SCHEDULE(STATIC,1)
DO IY = IY1, IY2, -IDY

DO IX = IX1, IX2, -IDX
DO WHILE(LLOCK(IX,IY+IDY)

!$OMP FLUSH
END DO
CALL SWOMPU(…,IX,IY,…)
LLOCK(IX,IY) = .FALSE.

END DO
END DO

END DO
!$OMP BARRIER

…check convergence…
END DO
…deallocate private work arrays…

!$OMP END PARALLEL
…deallocate shared work arrays…
END SUBROUTINE SWCOMP

Fig. 4. Implementation of the pipelined parallel approach in 
the main computational routine of SWAN using OpenMP.  
OpenMP compiler directives begin with the !$OMP sentinel.  
The ellipses indicate actual code omitted for clarity. 
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is equal to p and the efficiency is equal to one.  In practice, 
the speedup is less than p and efficiency is between zero and 
one, depending on the design of the parallel system and the 
parallel program.  Exceptions to this occur for certain cache-
bound applications which may exhibit superlinear speedup 
and efficiency greater than unity. 

Given the nature of the pipelined parallel approach in 
SWAN we can derive analytical expressions for the ideal 
parallel performance.  We assume, for a given application, 
that the time to compute the state at a geographic grid point is 
the same for all grid points.  We also assume there is zero 
overhead due to thread management.  Based on these 
assumptions and a simple counting process the expression for 
the ideal efficiency of a single sweep is derived as 

 ( ) ( ), ;
1 modideal

xy pE x y p
x y p y p

=
+ −  

, (4.1) 

where x and y are the geographic grid dimensions and     is 
the ceiling function.  Equation (4.1) is valid only when 

( )min ,p x y≤ .  In the case of ( )min ,p x y>  it is not 
possible to fully utilize all the processors; as a result the 
speedup becomes constant, i.e., p is replaced with ( )min ,x y  
in the denominator on the right hand side of equation (4.1).  
The theoretical efficiency is plotted in Fig. 5a as a function of 
p for several geographic grid sizes.  Peaks in efficiency, 
which become more pronounced as x is increased, occur 
where y p    changes (this includes where p is a divisor of 
y).  As y is increased the number of peaks also increases, but 
the relative size of the peaks is less significant.  With the 
exception of a highly elongated grid, where the efficiency 
peaks again at p = y, the best performance range is 
where 2p y≤ .  Note that when p is a divisor of both x and y 
then (4.1) becomes symmetric with respect to exchange of x 
and y.  In general, if one chooses p such that p is a divisor of 

y then the independent grid dimensions x and y become less 
important and the overall grid size, that is, x⋅y, can be used 
when estimating the parallel performance of a selected 
application. 

The measured efficiency of SWAN for a stationary 
application with nonuniform currents and an 80x60 spectral 
grid on a 32-processor IBM Regatta (1.3GHz Power4) is 
shown in Fig. 5b.  The measured efficiency is per iteration (4 
sweeps).  We see that the symmetries and the peak positions 
of the measured efficiency agree with those of the ideal 
efficiency (Fig. 5a).  However the measured efficiency is 
approximately 10 to 20% lower than the ideal efficiency.  
This is a manifestation of mainly thread overhead and 
remaining sequential portions of the program. 

The parallel performance of SWAN is dependent on the 
amount of work available at each geographic grid point − that 
is, on the spectral dimensions and whether the submatrix is 
tridiagonal or banded.  The measured efficiency of SWAN 
for several spectral grids with a fixed 64x64 geographic grid 
is shown in Fig. 6.  Although the work per geographic grid 
point is higher for the 144x128 spectral grid, the best overall 
performance is observed for the 36x32 spectral grid.  This is 
likely due to better cache utilization for the smaller spectral 
grid.  In the case of the 18x16 spectral grid the amount of 
work available at each geographic grid point is very small.  
Therefore, a large fraction of time is spent in thread 
management and sequential regions of the program resulting 
in a severe drop in parallel performance.  This point becomes 
significant when considering geographic grids that have a 
large percentage of dry (land) points where computations are 
skipped (although the points are still included in the 
geographic grid loops). 

Once the spectral dimensions and submatrix type are fixed 
the parallel performance of SWAN is, in principle, dependent 
only on the geographic grid dimensions and the number of 
processors.  However, even these three remaining parameters 
present a complexity that makes complete characterization of 
the parallel performance of SWAN impractical.  We have 
chosen to limit the characterization to those points where p is 
a divisor of y (where the ideal efficiency is optimal).  With 
this restriction we can reasonably consider only the overall 
geographic grid size when estimating the parallel 
performance.  Fig. 7 shows the measured efficiency as a 
function of p for several geographic grids on the IBM 
Regatta.  The total geographic grid size is expressed in units 
of 1024 using the symbol “K”.  The spectral grid is fixed at 
36x32.  As expected the efficiency increases as the 
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Fig. 5. Ideal (5a) and measured (5b) efficiency of SWAN for 
several geographic grid sizes (fixed spectral grid).  The ideal 
efficiency is for a single sweep as computed from (4.1).  The 
measured efficiency is per iteration (4 sweeps). 
Measurements were performed on a 32-processor IBM 
Regatta (1.3 GHz Power4). 
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geographic grid is increased.  It appears that for large grids 
(512x512 and larger) the efficiency on 16 to 32 processors 
will not go much higher than 90%.  Not only do the 
measurements in Fig. 8 provide a better understanding of 
trends, but they can also be used as a tool for estimating the 
performance when setting up a regional application of 
SWAN. 

For an example application we consider a non-stationary 
simulation of Lake Michigan with 2km spatial resolution 
(126x248 geographic grid, 36x32 spectral grid).  The 
simulation spans four days (November 8 - 12, 1995) with a 
time step of 0.1 hour, wind updates every hour, and data 
output every two hours.  Fig. 8 provides snapshots of 
significant wave height and wave direction from November 
10 and 12 of the Lake Michigan simulation.  The simulations 
were performed on a 32-processor IBM Regatta (1.3GHz 
Power4).  The sequential time for the four model day run was 
about 14.5 hours.  However, on 18 processors the execution 
time was only about 1 hour, clearly demonstrating the benefit 
of parallel processing and the viability of SWAN for 
operational use. 

Parallel performance measurements for the Lake 
Michigan case are shown in Fig. 9.  With the exception of 

19p =  the measurements were performed for p where the 
ideal efficiency has a local maximum.  As discussed above, 
these are the points where y p    changes, which includes 
those p where p is a divisor of y.  The efficiency for the total 
run was obtained by measuring the time from start to finish.  
The efficiency per iteration was obtained by only measuring 
the time for the iteration loop which does not include file 
input and output that occurs between time steps.  The data 
point at 19p =  is provided to show the effect of choosing p 
where the ideal efficiency has a local minimum.  We see that 
the effect of this choice is small since for this geographic grid 
size the fluctuations in ideal efficiency are only about 2%. 

From Fig. 8 we can see that although the total grid size is 
about 31K, the number of wet grid points is only about 13K 
(44%).  The importance of considering the number of wet 
points when making an estimate of the parallel performance 
is demonstrated in Fig. 9 where the 16K efficiency per 
iteration (from Fig. 7) closely follows that of the Lake 
Michigan case.  The efficiency for the total run is lower than 
the efficiency per iteration due to overhead from the time 
stepping and the sequential file input and output.  We can 
make a reasonable estimate for the parallel efficiency of the 

total run by measuring the execution times for various parts 
of the code during a short sequential run (say 2 model hours 
so as to include file input and output).  Suppose, for a short 
sequential run, the total time is t1 and the time spent in the 
sweep portion (where parallel execution can occur) of the 
code is ts1.  The fraction of time spent in sequential execution 
is then given by ( )1 1 1s sf t t t= − , which for the Lake 
Michigan case on the IBM Regatta turns out to be about 1%.  
Let Ei(p) be the estimated efficiency per iteration (as obtained 
from Fig. 7), then the efficiency for the total run of the Lake 
Michigan case can be estimated as 

 ( ) ( )
( )

1
1 s

total s
i

f
E p pf

E p

−
 −

= + 
  

. (4.2) 

Equation (4.2) is plotted in Fig. 9 using 1% for the sequential 
fraction and the measured efficiency per iteration for a 16K 
grid.  The agreement between the measured efficiency and 
the estimate for the total run is quite good.  This establishes 
that, at least for this parallel machine, the measure for the 
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sequential fraction effectively describes most of the overhead 
that would arise in a parallel run.  One can use the same 
procedure to estimate the parallel performance of SWAN for 
other regional applications. 

V. SUMMARY 
This paper has presented the development of a parallel 

version of the advanced third-generation wave model known 
as SWAN.  Through careful analysis of the data and 
numerical algorithms the dependencies and potential for 
concurrent computation were determined.  A pipelined 
parallel approach was chosen and implemented using 
OpenMP compiler directives which produce multithreaded 
code for shared-memory multiprocessor computers.  The 
parallel implementation required no algorithmic changes and 
is ‘bit-for-bit’ compatible with the original sequential code.  
No change has been made to the user interface.  An analytic 
expression was derived for the ideal parallel performance 
which displays the same features as the actual performance.  
Numerous performance measurements demonstrate the 
scalability of the parallel version of SWAN.  The significant 
reduction in turn-around time for both stationary and non-
stationary cases clearly establishes the viability of SWAN as 
an operational model.  We conclude by pointing out that all 
code changes presented in this paper have been accepted by 
the SWAN developers to be included in the official release.  
Also, the parallel version of SWAN is presently undergoing 
transition into operational use for the Navy. 
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